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Abstract

As computers become faster, have more memory, and use multiple parallel processors
complex codes that more accurately simulate physical phenomena have emerged to utili
capability. Most problems can benefit from this approach and many require it. But not all! T
are problems for which simpler methods on more modest computers still work. The trick
identify those problems, write the codes, and make their implementation sufficiently simple
they can be used conveniently by those who could profit from them. A Simple Plasma Cod
been written with this philosophy in mind. It retains just enough physics to allow real
simulations to be formulated and run quickly, even on a personal computer. This paper des
the physical model, its numerical implementation, and presents a sample simulation.
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A Simple Plasma Code

I. Introduction

As computers become faster, have more memory, and use multiple parallel processors
complex codes that more accurately simulate physical phenomena have emerged to utili
capability. Most problems can benefit from this approach and many require it. But not all! T
are problems for which simpler methods on more modest computers still work. The trick
identify those problems, write the codes, and make their implementation sufficiently simple
they can be used conveniently by those who could profit from them. This paper describe
such attempt.

II. The Physical Model

The Simple Plasma Code (SPC) represents an attempt to produce the simplest p
simulation code that has enough physics to yield useful results for realistic problems. The
computes the steady-state behavior of a plasma consisting of electrons and ions in a region
could contain conductors and dielectrics. Ion motion is influenced solely by the electros
field:

(1)

where M is the ion mass,V is their velocity,φ is the electrostatic potential, and Q is the io
charge. Electron inertia is ignored by setting their mass equal to zero. Balancing the ele
pressure with the electrostatic force gives:

(2)     =>

where n is the electron number density, q its (unsigned) charge, k is Boltzmann’s constan
T is the electron temperature, assumed to be constant.η is an integration constant.

The electrostatic potential is determined in one of two ways. Normally, it would
computed from Poisson’s equation:

(3) ,

where N is the ion number density. In regions where the plasma is known to be essen
charge-neutral,φ is determined from (2) by equating the electron and ion charge densities.

For the numerical solution of (1) - (3), the equations are put into dimensionless form. Le

is scaled by some characteristic dimension, L0, φ by φ0=(kT/q), velocity by v0=(kT/M)1/2, and
number density is scaled by its value at injection, N0. In dimensionless variables, the equation
become

td
dV Q

M
----- φ∇–=

nkT( )∇ qn φ∇= n ηe

qφ
kT
-------

=

ε φ∇( )∇• qn QN–( )=
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, dt,
(4)

(5) ,

whereα = Q/q andβ = N0q
2L2/(ε0kT) = (L/LDebye)

2.
The numerical algorithm iterates between (4) and (5), alternately solving the forme

generate enough ion trajectories to give the ion density, and then solving the latter to obtain
potential from this density. The parameterη is determined from known values of potential an
ion density in a charge-neutral region by setting n=N.

The parameterβ can be very large. Whereφ and its spatial derivatives are of order one, su
as an enclosed low-voltage region, the ion and electron densities differ by order1/β. In this case,
where the ion density is non-zero,φ can be approximated by imposing exact charge neutrali

(6) .

Where N=0, Poisson’s equation, (5), is solved with only the electron density. Solving (6) is e
than solving (5), which involves the product of a very large number times a very small differe

This is the extent of the physics in the model. Clearly, much has been omitted. The equ
are non-relativistic and lack time dependence. There is no electron inertia and their tempe
is assumed to be constant. Since there are no other ion species and no neutrals, there is
ionization, charge exchange, nor recombination. No collision phenomena, such as visc
conductivity, heat conduction, or inter-species drag, are included. Nor is there a magnetic
There are, obviously, problems for which this approach is totally inadequate, but for others,
be useful. An example of one such case will be presented.

III. The Numerical Algorithm

The numerical algorithm begins with the creation of a rectangular grid, assumed
illustration, to be two dimensional and Cartesian. The electrostatic potential and ion nu
density are specified on the grid.

The integration along an ion trajectory, defined by (4), is not performed with a time step
but rather with a constant spatial step, ds, defined by

(7)    and .

The size of ds is chosen to be less than either cell dimension, ds < min(∆x,∆y), so several steps
are required to cross a cell. With this definition, (4) becomes

(8) ,

td
dV α φ∇–=

ε φ∇( )∇• β e
φ αN–( )=

φ αN
η

-------- 
 ln=

ds
2

dx
2

dy
2

+= dy
dx
------

Vy

Vx
------=

V
sd

dV α φ∇–=
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(9) .

Trajectories are initiated at designated locations and followed until they either exit the re
or encounter an object, at which point they are terminated. The electric fields, the derivativ
φ, are defined the grid and interpolated to locations along trajectories. Each trajectory car

flux, F, representing a number per unit time (F is scaled by N0L0
2v0). At every step during the

construction of a trajectory, an area-weighted density contribution is added to each corner
surrounding cell. The amount deposited is the flux carried by the trajectory times the tim
resides at that location, F dt = F ds/|V|. Summing the contributions from all trajectories an
dividing by the volume of the cell gives the ion number density on the grid. Enough traject
must be used to provide good statistics. When all trajectories have been created and t
density determined, the potential consistent with this density is found from either (5) or (6

Poisson’s equation is solved using an exact method called a “Block Thomas Algorit
This is an extension of a well known algorithm for solving two point boundary value proble
The 1-D version goes like this. Suppose we have a difference equation forφ of the form (m and
n are used here as grid indices, not masses or densities):

(10)               Am φm+1 - Bm φm + Cm φm-1 + Dm = 0

with boundary (Dirichlet or Neumann) conditions at m=1 and m=M. If we make the ansatz
the solution satisfies

(11) φm = Em φm+1 +Fm

substitution into (10) gives

(12)        Em = Am/(Bm - CmEm-1)   and    Fm = (Dm + CmFm-1)/(Bm - CmEm-1).

The solution is obtained by finding E1 and F1 from the boundary condition at m=1 and using (12
to find the remaining E’s and F’s by scanning forward. The other boundary condition giveφM
(possibly using EM-1 and FM-1) and theφ’s are recovered by scanning (11) backwards. Th
double scan technique can be readily extended to two dimensions.

In the two dimensional algorithm, the scaler quantityφm becomes a vector of length N
representing its values in the other direction. A, B, C and E each become MxN matrices wh
and F become vectors of length M. Equations (11) and (12) have natural vector-m
counterparts. For example, (12) becomes

(13)      (Bm - CmEm-1) Em = Am   and    (Bm - CmEm-1) Fm = (Dm + CmFm-1).

This linear system is solved using LU decomposition. The boundary conditions in the sca
direction are found by extension of the 1-D method. Those in the other direction are obtain
suitably defining A, B, C, and D at the two boundaries, n = 1 and N.

If conductors at potentialφk are in the domain, A=C=0, B=1, and D=φk at the designated
locations. Similarly, in charge-neutral regions, (6) gives A=C=0, B=1, and D=ln(N/η).

V
sd

dX
Vx= V

sd
dY

Vy= V
sd

dVx α
x∂

∂φ
–= V

sd

dVy α
y∂

∂φ
–=
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The potential is obtained at each iteration with this technique. When a new dens
found, the error in the difference equation is computed. The iteration stops when this erro
below some specified bound.

IV. An Example

To demonstrate the code, a simulation is presented of a compact device that acceler
annular beam of singly ionized molecular deuterium. Figure 1 illustrates the simulation re
The underlying grid has 100 by 100 cells (101 points in each direction) and 5000 trajectorie
all of which are plotted).

The conductors in the source region are at zero potential, except for the emission
which is at +5 Volts. Those in the accelerator region are at -10 kV, except for the beam d
which is at -9.5 kV. The relative dielectric constant of all dielectrics is 9. The elect
temperature is 1 eV. A 0.25 amp ion current is injected from the top of the emission block
a directed and thermal velocity (spread) of 0.1 eV each. The computation is in (r,z) coordi
so an azimuthal thermal velocity component is included.

The potential in the source region drops about 5 Volts from where the ions are inject
the screen, as shown in figure 2. This electric field reflects the expanding ion beam. The b
in turn, expands and accelerates because of the field. This “ambipolar” electric field aris
counter the hot electron’s tendency to wander from the beam. Its magnitude is dir
proportional to the electron temperature. If the electron temperature were doubled to 2 e
potential drop from source to screen would double to about 10 Volts and ions would reac
screen with twice the energy. At zero electron temperature, no electric field is required to
the electrons bound to the ions and the beam would neither accelerate nor expand (except t
its own temperature). The input file for this simulation is in the appendix.

V. Cheap Tricks

Coaxing a computer to yield realistic simulations in a timely manner often requires a b
numerical tricks. Those used in the code, and in particular, for this example, are describe

Cheap trick #1: Conductors and dielectrics are placed on the numerical grid as polygon
given either a potential or dielectric constant. A subroutine determines whether a point lies w
a polygon by drawing a line from the point to “infinity” and counting the crossings with
boundary. An odd number of crossings means the point lies inside; an even number pla
outside. The polygon tester places each grid point either in vacuum or inside an object an
it accordingly. Note that the underlying grid is not conformal with these objects; they are sim
overlaid on it. This limits resolution and care must be taken to insure that objects intersect e
grid points to define them and that they are not so narrow that a trajectory can pass through
undetected (the minimum width must be at least ds). As a trajectory is constructed, a ch
made to determine if it has entered a polygonal object. If so, the trajectory is terminated. Th
is performed only when the trajectory is in a cell that intersects an object.

Cheap trick #2: Cell volumes are used to compute density, but only that portion of a
which lies in vacuum should be counted toward its volume because only it can contain ion
compute cell volumes, all cells are loaded with a uniform array of trial “particles”. For exam

in the 5 x 5 array in figure 3, each particle will have 1/25th of the cell’s volume,∆x∆y. Particles
that lie in an object are then removed. The effective cell volume is computed by summin
volumes of the remaining particles. This need be done only once.
                -6-
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Cheap trick #3: As already described, the potential in low voltage regions can be determ
from the charge-neutral approximation, (6), when the ion density is not zero. This is not
computationally superior to using Poisson’s equation to bludgeon the solution toward c
neutrality, it also eliminates plasma sheaths in those cases where they are not an importa
of the solution. Sheaths arise at a conducting boundary becauseφ is given a prescribed value. If
the grid does not have resolution on a Debye scale, non-physical gradients will occur a
difference equation attempts to satisfy this condition. The charge-neutral approxim
eliminates the boundary condition associated with the partial differential equation, and with
plasma sheath. This does not alter the solution in the bulk of the plasma since it would have
shielded from the conductor by the sheath. Of course, in problems where the sheath is
computed, the charge-neutral approximation cannot be used.

Cheap trick #4: The solution is obtained iteratively, alternately finding the potential from
ion density, constructing the trajectories from potential gradients, and computing the ion de
from the trajectories. It may, or may not converge, depending on the parameters. For exa
higher current often causes convergence problems. There are ways to enhance converg
the charge-neutral approximation, the new potential consists of a fraction of the old pote
typically 50% but more if needed, combined with the newly computed one. This produc
damping effect, reduces overshoots, and encourages convergence. A similar technique is
the Poisson solver, (10), by adding a term, W, to B and adding Wφold to D. Determining the
optimal expression for W is a formidable mathematical challenge, but experience can be u
a guide to find ones that usually work. In this example, W is set to some multiple of eitherβ(n+N)

or β(nN)1/2. The code has a restart capability, so a previous solution can be used as input f
with similar parameters. In general, however, the iteration converges reasonably quickly
when starting from scratch.

Cheap trick #5: A conducting screen separates the low-voltage source region, labeled I
the high voltage ion acceleration region, labeled II. Because these regions are elect
isolated, a trajectory does not experience the high accelerating field until it has actually cr
the screen into region II. To ensure that this actually occurs, two separate potentials,φI andφII ,
are computed. For the first, all the high voltage potentials are set to zero, the screen is rem
andφI is found EVERYWHERE, using (6) where N>0 and (5) otherwise. The second poten
φII is set to zero in region I and solved in region II using Poisson’s equation with the scree
the correct potentials. As a trajectory develops, the polygon tester determines its region. If
region I, it responds toφI. If it is in region II, it responds toφII . Thus, the resolution is better tha
might be expected and the actual shape of the screen is incorporated with minimal impr
from the underlying rectangular grid. The two potentials are obtained sequentially, because
should be no feedback from region II to region I. (The algorithm fails if trajectories are tur
around in region II and re-enter region I.) To account for the screen’s transparency, a trajec
flux is reduced by the specified amount as it crosses the screen.

IV. Summary

Approximations and omissions are nearly always made when describing physical sys
If a system is to be simulated on a computer, additional numerical approximations are u
necessary. It is the scientist’s job to decide what should be kept and what can be neglec
approximated. Having done this, the simplest numerical model should be used. This
presents one such approach for a limited, but useful, class of problems.
                -7-



Appendix

The input file for the ion accelerator example

 ’SPC example input file’
 ’r-grid, z-grid, number of trajectories, initial iterations’
  101  101   5000   10

 ’Maximum error, numerical convergence parameters. 0<c1<1, 0<c2’
  0.01    0.5     1.

 ’Number of trajectories plotted’
  40

 ’Enter 0 for lengths in centimeters, 1 for inches’
  0

 ’Edirected, Ethermal, Te(eV), average atomic ion mass, ion charge’
  0.1    0.1     1.       4.      1.

 ’Injected ion current(A), Emitter voltage(V), Remit, Zemit, screen transparancy’
  0.25    5.    0.1    0.1     0.5

 ’Number of conductor and dielectric polygonal elements’
  8    3

 ’Descriptive name of conductor’
 ’Number of vertices. Potential’
 ’List of vertices (r,z) of conductor polygons’

 ’Emission block (must have anode potential)’
  4    5.
  0. ..0
  .100 .0
  .100 .100
  0. 100

 ’Inner screen support’
  4    0.
  0. .500
  .270 .500
  .270 .550
  0. .550

 ’Outer screen support with flange’
  6     0.
  .450 0.
                -8-



  1.10 0.
  1.10 .100
  .500 .100
  .500 .360
  .450 .360

 ’Inner high voltage electrode’
  6    -1.e4
  0. 1.10
  .450 1.10
  .450 1.20
  .050 1.20
  .050 1.75
  0. 1.75

 ’Outer high voltage electrode’
  6    -1.e4
  1.20 1.10
  1.80 1.10
  1.80 1.75
  1.75 1.75
  1.75 1.20
  1.20 1.20

 ’Far wall’
  4    -1.e4
  0. 1.75
  1.80 1.75
  1.80 1.85
  0. 1.85

 ’Surrounding case’
  6     -1.e4
  1.95 0.
  2.00 0.
  2.00 2.00
  0. 2.00
  0. 1.95
  1.95 1.95

 ’Beam dump’
  4    -0.95e4
  .500 1.55
  1.50 1.55
  1.50 1.65
  .500 1.65
                -9-



 ’Descriptive name of insulator’
 ’Number of vertices. Relative dielectric constant’
 ’List of vertices (r,z) of dielectric polygons’

 ’Beam cutoff’
  8     9.
  .100 0.
  .450 0.
  .450 .220
  .200 .220
  .200 .170
  .380 .170
  .380 .100
  .100 .100

 ’Enclosing dielectric’
  8     9.
  1.10 0.
  1.95 0.
  1.95 1.95
  0. 1.95
  0. 1.85
  1.80 1.85
  1.80 1.10
  1.10 .100

 ’Beam dump holder’
  4     9.
  .700 1.65
  1.30 1.65
  1.30 1.75
  .700 1.75

 ’Number of vertices in charge neutral region. ’
 ’List of vertices (r,z) of polygon enclosing charge-neutral region’
  6
  0. 0.
  .500 0.
  .500 .360
  .450 .360
  .270 .550
  0. .550
                -10-
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Figure 1. Potential contours and ion trajectories for an ion accelerator. (Blue=conductors,
green=dielectrics). The center line is the left vertical axis. A 50% transmissive screen (red
separates the source region from the accelerator region.
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Figure 2. The potential,φI, and trajectories in the source region, obtained from the charge-
neutral approximation where N>0 and from Poisson’s equation where N=0.

Figure 3. Determining the vacuum volume of a cell by removing test particles in a polygon
object and summing the volume of those remaining.
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